SRI SAI COACHING CENTRE

2/25, Raja Mill Road, Madurai - 01.

TRB - P.G. Asst. - 2019 - Physics - Model - I
Name:

Roll No

14.09.19

1. Which of the following potential occurs in case of a charge moving in an electromagnetic field
A) $u\left(q_{k}, p_{k}\right)$
B) $u\left(q_{k}, \dot{q}_{k}\right)$
C) $u\left(q_{k}, t\right)$
D) $u\left(q_{k}, \dot{p}_{k}\right)$
2. A mass m is connected on either side with a spring each of spring constants K_{1} and K_{2}. The free ends of springs are tied to rigid supports the displacement of the mass is x from equilibrium position. Which one of the following is TRUE?

A) The force acting on the mass is $-\left(K_{1} K_{2}\right)^{1 / 2} \mathrm{x}$
B) The angular momentum of the mass is zero about the equilibrium point and its Lagrangian is $\frac{1}{2} \mathrm{~m} \dot{x}^{2}-\frac{1}{2}\left(K_{1}+K_{2}\right) x^{2}$
C) The total energy of the system is $\frac{1}{2} \mathrm{~m} \dot{x}^{2}$
D) The angular momentum of the mass is $m x \dot{x}$ and the Lagrangian of the system is $\frac{m}{2} \dot{x}^{2}+\frac{1}{2}\left(K_{1}+K_{2}\right) x^{2}$
3. If the Lagrangian does not depend on time explicity
A) The Hamiltonian is constant
B) the Hamiltonian can't be constant
C) the kinetic energy is constant
D) the potential energy is constant
4. The Hamiltonian corresponding to the Lagrangian $\mathrm{L}=\mathrm{ax}^{2}+\mathrm{by}^{2}-\mathrm{kxy}$ is
A) $\frac{P x^{2}}{2 a}+\frac{P y^{2}}{2 b}+K x y$
B) $\frac{P x^{2}}{4 a}+\frac{P y^{2}}{4 b}-\mathrm{Kxy}$
C) $\frac{P x^{2}}{4 a}+\frac{P y^{2}}{4 b}+\mathrm{Kxy}$
D) $\frac{P x^{2}+P y^{2}}{4 a b}+K x y$
5. If the Lagrangian of a particle moving in one dimensions is given by $\mathrm{L}=\frac{\dot{x}^{2}}{2 x}-V(x)$, the Hamiltonian is
A) $\frac{1}{2} x p^{2}+V(x)$
B) $\frac{\dot{x}^{2}}{2 x}+V(x)$
C) $\frac{1}{2} \dot{x}^{2}+V(x)$
D) $\frac{p^{2}}{2 x}+V(x)$
6. The mean free path of the particles of a gas at temperature T_{O} and Pressure P_{o} has a value λ_{o}. It the pressure is increased to $1.5 P_{o}$ and the temperature is reduced to $0.75 T_{o}$, then mean free path?
A) remains unchanged
B) is reduced to half
C) is doubled
D) is equal to $1.125 \lambda_{o}$
7. A paramagnetic system consisting of N spin-half particles, is placed in an external magnetic field. It is found that $N / 2$ spins are aligned parallel and the remaining $\mathrm{N} / 2$ spins are aligned antiparallel to the magnetic field. The statistical entropy of the system is
A) $2 \mathrm{NK}_{\mathrm{B}} \ln 2$
B) $N / 2 \mathrm{~KB} \ln 2$
C) $3 \mathrm{~N} / 2 \mathrm{~K}_{\mathrm{B}} \ln 2$
D) $\mathrm{NK}_{\mathrm{B}} \ln 2$
8. For a black body radiation in a cavity, photons are created and annihilated freely as a result of emission and absorption by the walls of the cavity. This is because,
A) the chemical potential of the photons is zero
B) photons obey Pauli exclusion principle
C) Photons are spin-1 particles
D) the entropy of the photons is very large
9. The wavefunctions of two identical particles in states n and s are given by $\phi_{n}\left(r_{1}\right)$ and $\phi_{s}\left(r_{2}\right)$ respectively. The particles obey $\mathbf{M}-\mathrm{B}$ statistics. The state of the combined two particles system is expressed as
A) $\phi_{n}\left(r_{1}\right)+\phi_{s}\left(r_{2}\right)$
B) $\frac{1}{\sqrt{2}}\left[\phi_{n}\left(r_{1}\right) \phi_{s}\left(r_{2}\right)+\phi_{n}\left(r_{2}\right) \phi_{s}\left(r_{1}\right)\right]$
C) $\frac{1}{\sqrt{2}}\left[\phi_{n}\left(r_{1}\right) \phi_{s}\left(r_{2}\right)-\phi_{n}\left(r_{2}\right) \phi_{s}\left(r_{1}\right)\right]$
D) $\phi_{n}\left(r_{1}\right) \phi_{s}\left(r_{2}\right)$
10. Two particles are said to be distinguishable when
A) the average distance between them is large compared to their de Broglie wavelength
B) the average distance between them is small compared to their de Broglie wavelength
C) they have overlapping wavepackets
D) their total wave function is symmetric under particle exchange
11. Correct statement(s) about Bose-Einstein condensation?
i. $T<\frac{h^{2}}{2 \pi m K_{B}}\left(\frac{{ }_{N}}{V \xi(3 / 2)}\right)^{2 / 3}$,
ii. $T>\frac{h^{2}}{2 \pi m K_{B}}\left(\frac{N}{V \xi(3 / 2)}\right)^{2 / 3}$
iii. Number of particles in the ground state is greater than the excited state
iv. Number of particles in the excited state is greater than the ground state
v. particles in the ground states correspond to the normal component of liquid $\mathrm{He}-\mathrm{II}$ vi. particles in the ground states correspond to the superfluid component of liquid He-II
A) (i), (iii) and (v)
B) (ii), (iv) and (vi)
C) (i), (iii) and (vi)
D) (ii), (iv) and (v)
12. In a first order phase transition, the transition temperature and specific heat of the system are
A) diverges and its entropy remains the same
B) diverges and its entropy has finite discontinuity
C) remains unchanged and its entropy has finite discontinuity
D) has finite discontinuity and its entropy diverges
13. Identify the Null identities in the following
A) $\nabla . \nabla \mathrm{V}$ and $\nabla . \nabla \mathrm{A}$
B) $\nabla \cdot(\nabla \mathrm{x} \mathrm{V})$ and $\nabla \mathrm{x}(\nabla \mathrm{A})$
C) $\nabla \mathrm{x}(\nabla \mathrm{V})$ and $\nabla .(\nabla \mathrm{x} \mathrm{A})$
D) $\nabla^{2} \mathrm{~V}$ and $\nabla^{2} \mathrm{~A}$
14. Stokes theorem is used to transform
A) Surface integral to line integral
B) line integral to surface integral
C) Volume integral to surface integral
D) Surface integral to volume integral
15. Let $\rho_{v}=(3 \mathrm{x}+4 \mathrm{y}+2 \mathrm{z})^{C} / m^{3}$ in the cubical region described by $0 \leq \mathrm{x}, \mathrm{y}, \mathrm{z} \leq 3$ and the cube. Find the total charge contained within the cube
A) 124.5 C
B) 364.5 C
C) 500.2 C
D) Zero
16. Match the following:
17. Electric field intensity $(\bar{E}) \quad-\quad$ a. polarization charge only
18. Electric displacement $(\bar{D}) \quad-\quad$ b. All charges
19. Polarization $(\bar{P}) \quad-\quad$ c. Point charges
20. Coulumb Force $(\bar{F}) \quad-\quad$ d. Free charges
$\begin{array}{rcccccccc}\text { Codes: } & 1 & 2 & 3 & 4 & 1 & 2 & 3 & 4 \\ \text { A) } & \text { b } & \text { c } & \text { a } & \text { d } & \text { B) } & \text { a } & \text { c } & \text { b } \\ \text { C) } & \text { b } & \text { d } & \text { a } & \text { c } & \text { D) } & \text { d } & \text { a } & \text { b } \\ \text { c }\end{array}$
21. In a uniform plane wave $\left|\frac{\epsilon}{H}\right|$ is
A) $\sqrt{\frac{\mu}{\varepsilon}}$
B) $\sqrt{\frac{\varepsilon}{\mu}}$
C) $\sqrt{\mu \varepsilon}$
D) 1
22. If the electrostatic potential were given by $\phi=\phi_{0}\left(x^{2}+y^{2}+z^{2}\right)$, where ϕ_{0} is constant, then the charge density giving rise to the above potential would be:
A) Zero
B) $-6 \phi_{0} \varepsilon_{0}$
C) $-6 \phi_{0}$
D) $\frac{-6 \phi_{0}}{\varepsilon_{0}}$
23. At the interface between two linear dielectrics $\left(\varepsilon_{1}\right.$ and $\left.\varepsilon_{2}\right)$. The electric field lines bend as shown in the figure. Assume that there are no free charges at the interface. The ratio ε_{1} and ε_{2} is

A) $\frac{\tan \theta_{1}}{\tan \theta_{2}}$
B) $\frac{\cot \theta_{1}}{\cot \theta_{2}}$
C) $\frac{\cos \theta_{1}}{\cos \theta_{2}}$
D) $\frac{\sin \theta_{1}}{\sin \theta_{2}}$
24. A magnetic field $\bar{B}=B_{o}(\hat{\imath}+2 \widehat{\jmath}-4 \widehat{k})$ exists at a point p. If a test charge moving with a velocity $\bar{V}=V_{o}(3 \hat{\imath}-\hat{\jmath}+2 \widehat{k})$ experiences no force at a certain point. The electric field at the point p is
A) $\bar{E}=-V_{o} B_{o}(3 \hat{\imath}-2 \widehat{\jmath}+4 \widehat{k})$
B) $\bar{E}=+V_{o} B_{o}(\hat{\imath}+\hat{\jmath}+7 \widehat{k})$
C) $\bar{E}=V_{o} B_{o}(14 \widehat{\jmath}+17 \widehat{k})$
D) $\bar{E}=-V_{o} B_{o}(14 \widehat{\jmath}+7 \widehat{k})$
25. Which of the following statements is not applicable to ferromagnetic materials?
A) susceptibility $\chi_{m} \gg 1$
B) it shows the phenomenon of hysteresis
C) its permeability has a fixed value
D) it can show spontaneous magnetization below certain temperature
26. The equation $\bar{\nabla} \times \overline{\mathrm{H}}=\overline{\mathrm{J}}+\frac{\partial \overline{\mathrm{D}}}{\partial t}$ is the differential form of
A) Faraday's law
B) Maxwell's equation
C) Ampere's law D) Lorentz equation
27. Which one of the following is not the method to produce plane polarized light
A) polarized method
B) plane retardation method
C) Beam splitter method
D) Double slit method
28. The time average power flow per unit area in a uniform plane wave is
A) $P_{a v}=\frac{E}{2 H}$
B) $P_{a v}=\frac{E}{2 \mu_{0} H}$
C) $P_{a v}=\frac{E_{0}}{2 \eta_{0}}$
D) $P_{a v}=\frac{E_{0}^{2}}{2 \eta_{0}}$
29. Find the velocity of a plane wave in a lossless medium having a relative permittivity of 5 and relative permeability of unity
A) $1.34 \times 10^{8} \mathrm{~m} / \mathrm{s}$
B) $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
C) 4.28×10^{8}
D) infinity
30. Aspect ratio (a:b) of rectangular metal waveguide to carry only the $T E_{10}$ mode at a frequency of 5000 MHz is
A) $1: 2$
B) $2: 1$
C) $1: 0$
D) $0: 1$
31. The capacitor connected between the collector and the tuned circuit of Hartley oscillator is called as
A) Radio frequency Choke (RFC)
B) Coupling Capacitor (Cc)
C) blocking capacitor $\left(\mathrm{C}_{\mathrm{B}}\right)$
D) No capacitor is connected only inductor is connected
32. Operating frequency of RC phase shift Oscillator with $\mathrm{R}=6 \mathrm{k} \Omega, \mathrm{C}=1500 \mathrm{pF}$ and $\mathrm{Rc}=18 \mathrm{~K} \Omega$ is
A) 5.44 KHz
B) 6.18 KHz
C) 7.22 KHz
D) 10 KHz
33. The main function of a clipping circuit is to
A) remove a certain portion of the input signal above or below a certain level
B) Suppress amplitude variations in the input signal voltage
C) restore d.c. level to the signal
D) Both A and B
34. Flip-Flops are used in a microprocessor to indicate
A) shift register
B) latches
C) counters
D) Flags
35. HLT is a / an
A) data transfer instruction
B) arithmetic instruction
C) logical instruction
D) Machine control instruction
36. SUB B instruction in 8085 microprocessor
A) resets the carry and sign flag
B) sets the zero and parity flag
C) sets the zero and carry flag
D) can modify all flags according to result
37. Match the following:
P. Doppler Broadening - 1. Moment of inertia
Q. Natural Broadening - 2. Refractive index
R. Rotational spectrum

- 3. Lifetime of the energy level
S. Total internal reflection
- 4. Pressure

Codes: \quad P \quad Q \quad R

A)	4	3	1	2
C)	2	3	4	1

$\begin{array}{lllll}\text { B) } & 3 & 2 & 1 & 4 \\ \text { D) } & 1 & 4 & 2 & 3\end{array}$
34. Consider the pure rotational spectrum of a diatomic rigid rotor. The separation between two consecutive lines $(\Delta \bar{v})$ in the spectrum
A) is directly proportional to the moment of inertia of the rotor
B) is inversely proportional to the moment of inertia of the rotor
C) depends on the angular momentum
D) is directly proportional to the square of the interatomic separation
35. Acceleration of a mass in Atwood machine is
A) $\ddot{x}=\left(\frac{M_{1}+M_{2}}{M_{1}-M_{2}}\right) g$
B) $\ddot{x}=\left(\frac{M_{1}-M_{2}}{M_{1}+M_{2}}\right) g$
C) $\ddot{x}=\left(M_{1}+M_{2}\right) g$
D) $\ddot{x}=\left(\frac{1}{M_{1}-M_{2}}\right) g$
36. Normal frequencies of Linear Triatomic molecule is,
A) $\omega_{1}=0 ; \omega_{2}=\sqrt{\frac{k}{m}} ; \omega_{3}=\left(\frac{k}{m}\right)^{3 / 2}\left(1+\frac{2 m}{M}\right)^{1 / 2}$
B) $\omega_{1}=0 ; \omega_{2}=\sqrt{\frac{k}{m}} ; \omega_{3}=\sqrt{\frac{k}{m}\left(1+\frac{2 m}{M}\right)}$
C) $\omega_{1} \neq 0 ; \omega_{2}=\sqrt{\frac{k}{m}} ; \omega_{3}=\sqrt{\frac{k}{m}\left(1+\frac{2 m}{M}\right)}$
D) $\omega_{1} \neq 0 ; \omega_{2}=\sqrt{\frac{k}{m}} ; \omega_{3}=\left(\frac{m}{k}\right)^{3 / 2}\left(1+\frac{2 m}{M}\right)^{1 / 2}$
37. Which of the following one gives wide spread physical applications in acoustics, molecular spectra, vibrations of mechanisms and couple electrical circuits
A) Theory of small oscillations
B) Principle of Least action
C) Lagrangian formulation
D) Jacobi's Integral method
38. The first rotation about the vertical axis in Euler angle is called as
A) Heading (or) Yaw angle
B) Pitch (or) Attitude angle
C) Roll (or) Bank Angle
D) Trait - Bryan Angles
39. Lagrange's equations of motion for small Oscillations is
A) $\sum_{K}\left(V_{j k}-\omega^{2} T_{j k}\right) a_{k}=0$
B) $\sum_{K}\left(V_{j k}-\omega T_{j k}\right) a_{k}=0$
C) $\sum_{K}\left(V_{j k}{ }^{2}-\omega T_{j k}\right) a_{k}=0$
D) $\sum_{K}\left(V_{j k}{ }^{2}-\omega T_{j k}^{2}\right) a_{k}=0$
40. Liouville's Theorem is
A) $\left(\frac{\partial p}{\partial t}\right)+\sum_{\mathrm{j}}\left(\frac{\partial \mathrm{p}}{\partial \mathbf{q}_{\mathrm{j}}} \dot{\mathrm{q}}_{j}+\frac{\partial p}{\partial p_{j}} \dot{\mathrm{p}}\right)=0$
B) $\left(\frac{\partial^{2} p}{\partial t^{2}}\right)+\sum_{\mathrm{j}}\left(\frac{\partial \mathrm{p}}{\partial \mathrm{q}_{\mathrm{j}}} \dot{\mathrm{q}}_{j}+\frac{\partial p}{\partial p_{j}} \dot{\mathrm{p}}_{j}\right)=0$
C) $\left(\frac{\partial p}{\partial t}\right)+\sum_{\mathrm{j}}\left(\frac{\partial \mathrm{p}}{\partial \mathrm{q}_{\mathrm{j}}} \dot{\mathrm{p}}_{j}+\frac{\partial p}{\partial p_{j}} \dot{\mathrm{p}}_{j}\right)=0$
D) $\left(\frac{\partial^{2} p}{\partial t^{2}}\right)+\sum_{\mathrm{j}}\left(\frac{\partial \mathrm{p}}{\partial \mathrm{q}_{\mathrm{j}}} \dot{\mathrm{p}}_{j}+\frac{\partial p}{\partial p_{j}} \dot{\mathrm{q}}_{j}\right)=0$
41. Consider a gas of only two particles A, B obeying B-E statistics and each particle be in one of the three possible quantum states $1,2,3$. How many possible states exist for the whole gas?
A) 9
B) 6
C) 3
D) 2
42. A particle of mass ' m ' obeys Maxwellian velocity distribution. The average speed of the particle is
A) $\frac{1}{2} K T$
B) $\sqrt{\frac{2 K T}{m \pi}}$
C) $\frac{3 K T}{m}$
D) $\sqrt{\frac{8 K T}{m \pi}}$
43. In NMR the nucleus may be visualized as a rotating spherical charge with
A) the magnetic moment pointing along the axis of rotation
B) the magnetic moment pointing perpendicular to the axis of rotation
C) the magnetic moment inclined to the axis of rotation
D) the magnetic moment independent of the axis of rotation
44. A spherical top molecule is one in which
A) $I_{A} \neq I_{B} \neq I_{C}$
B) $\mathrm{I}_{\mathrm{A}}=\mathrm{I}_{\mathrm{B}} \neq \mathrm{I}_{\mathrm{C}}$
C) $I_{A}=I_{B}=I_{C}$
D) $\mathrm{I}_{\mathrm{A}}=\mathrm{I}_{\mathrm{B}} ; \mathrm{I}_{\mathrm{C}}=0$
45. The selection rule for transition in rotational spectra is
A) $\Delta \mathrm{J}= \pm 2$
B) $\Delta \mathrm{J}= \pm 1$
C) $\Delta J=0$
D) $\Delta \mathrm{J}=0, \pm 2$
46. Let α and Q are the polarizability and the normal coordinate associated with a particular mode of vibration of the molecule. The condition for no Raman line is
A) $\left(\frac{\partial \alpha}{\partial Q}\right)_{0}=0$
B) $\left(\frac{\partial Q}{\partial \alpha}\right)_{0}=0$
C) $\left(\frac{\partial \alpha}{\partial Q}\right)_{0} \neq 0$
D) $\left(\frac{\partial Q}{\partial \alpha}\right)_{0} \neq 0$
47. The cavity magnetron uses strapping to
A) Prevent mode jumping
B) Prevent cathode back heating
C) Ensure bunching
D) Improve the phase focusing effect
48. In a microprocessor the register which holds the address of the next instruction to be fetched is
A) Accumulator
B) Program counter
C) Stack counter
D) Instructor register
49. Bubble chamber uses
A) Super heated liquid
B) Super saturated liquid
C) Super heated vapour
D) Super saturated vapour
50. Synchrotron can accelerate
A) Electron and proton
B) Electron and neutron
C) Proton and neutron
D) Neutron and positron
51. An ideal nuclear reactor moderators should have
A) High atomic weight and low absorption cross-section for neutrons
B) Low atomic weight and low absorption cross section for neutron
C) Low atomic weight and high absorption cross-section for neutrons
D) High atomic weight and high absorption cross-section for neutrons
52. The diffusion equation is also called as
A) Critical equation
B) Geiger - Nuttel equation
C) Maxwell's equation
D) Fermi age equation
53. The scintillation counter works on the principle of
A) Electron-hole pair production in the material when particle strikes on it
B) Conversion of ultra violet light to visible light
C) The emission of light from certain materials when charged particles strike on it
D) The carrier generation in the depletion region of a junction when a charged particle strikes on it
54. A photon has the properties except
A) Zero intrinsic angular momentum
B) Its momentum is $h v / c$
C) Its total energy is kinetic
D) It has zero rest mass
55. Correct expression for total binding energy B of a nucleus ($a_{1}, a_{2}, a_{3}, a_{4}>0$)
A) $\mathrm{B}=\mathrm{a}_{1} \mathrm{~A}-\mathrm{a}_{2} \mathrm{a}^{2 / 3}-\mathrm{a}_{3} \frac{z(z-1)}{A^{\frac{1}{3}}}-\mathrm{a}_{4} \frac{(A-2 z)^{2}}{A}+\delta$
B) $\mathrm{B}=\mathrm{a}_{1} \mathrm{~A}+\mathrm{a}_{2} \mathrm{~A}^{2 / 3}-\mathrm{a}_{3} \frac{z(z-1)}{A^{\frac{1}{3}}}-\mathrm{a}_{4} \frac{(A-2 z)^{2}}{A}+\delta$
C) $\mathrm{B}=\mathrm{a}_{1} \mathrm{~A}+\mathrm{a}_{2} \mathrm{~A}^{1 / 3}-\mathrm{a}_{3} \frac{z(z-1)}{A^{\frac{1}{3}}}-\mathrm{a}_{4} \frac{(A-2 z)^{2}}{A}+\delta$
D) $\mathrm{B}=\mathrm{a}_{1} \mathrm{~A}-\mathrm{a}_{2} \mathrm{~A}^{1 / 3}-\mathrm{a}_{3} \frac{z(z-1)}{A^{\frac{1}{3}}}-\mathrm{a}_{4} \frac{(A-2 z)^{2}}{a}+\delta$
56. The correct matching pair of packing fraction of element with atomic mass number is
A) Packing fraction is positive $A>20$
B) Packing fraction is positive $20<\mathrm{A}<200$
C) Packing fraction is negative $20<A<200$
D) Packing fraction is negative $\mathrm{A}<20$
57. ${ }_{92} \mathrm{U}^{233}$ undergoes successively eight α-decays and six β-decays. What is the resulting nucleus?
A) $82 \mathrm{~Pb}^{202}$
B) $82 \mathrm{~Pb}^{206}$
C) $82 \mathrm{~Pb}^{210}$
D) $82 \mathrm{~Pb}^{214}$
A) Enhances the the probability of electron emission and decreases the probability of position emission
B) Enhances the probability of position emission and decreases the probability of
58. Deuterons are accelerated in the synchrocyclotron which has magnetic field of 15000 gauss at the centre and 14310 gauss at the periphery of the dee. Calculate the maximum frequency of the dee voltage
A) $10.44 \mathrm{Mc} / \mathrm{Sec}$
B) $11.44 \mathrm{Mc} / \mathrm{sec}$
C) $0.944 \mathrm{Mc} / \mathrm{sec}$
D) $0.544 \mathrm{Mc} / \mathrm{sec}$
59. According to Bohr and wheeler's theory of nuclear fission, the maximum deformation in the radius r can be expressed as
A) $\mathrm{r}=\mathrm{R}\left[1+\sum_{\mathrm{l}=0}^{\infty} \alpha_{l} \mathrm{P}_{1}(\cos \theta)\right]$
B) $r=R\left[1+\sum_{1=0}^{\infty} \alpha^{2} / \mathrm{P}_{1}^{2}(\sin \theta)\right]$
C) $\mathrm{r}=\mathrm{R}\left[\left(1+\alpha_{l}\right) \sum_{\mathrm{l}=0}^{\infty} \mathrm{P}_{1}{ }_{1}\left(\sin ^{2} \theta\right)\right]$
D) $\mathrm{r}=\mathrm{R} \sum_{\mathrm{l}=0}^{\mathrm{b}} \alpha_{l} \mathrm{P}_{1} \cos \theta$
60. In Fermi's theory of beta decay, the Coulomb correction
A) Enhances the probability of electron emission and decreases the probability of position emission
B) Enhances the probability of position emission and decreases the probability of electron emission
C) Enhances the probability of both position and electron emission
D) Decreases the probability of both positron and electron emission
61. According to Lorentz transformation, if $\mathrm{v}>\mathrm{c}$ then the quantity $\sqrt{1-v^{2} / c^{2}}$ becomes
A0 Real
B) Imaginary
C) zero
D) Infinity
62. Which one of the following is not the postulate of special theory of relativity?
A) The laws of physics have not same for all inertial frames
B) The laws of physics have same for all inertial frames
C) The speed of light in free space is always constant
D) The speed of light in free space is independent of the source and the observer
63. If A and B are two event them $p(A+B)$
A) probability of occurrence of at least one of the event $\mathrm{s} \mathrm{A}, \mathrm{B}$
B) probability of occurrence of both the events A and B
C) conditional probability for event A
D) conditional probability for event B
64. In between two groups, if one to one correspondence exists between their elements then it is called
A) Heteromorphism
B) Isomorphism
C) Homomorphism
D) none of these
65. Which one of the following is the characteristics of a normal curve?
A) Only Mean and Median Coincide
B) Only Mean and Mode Coincide
C) Only Median and Mode Coincide
D) Mean, Median and Mode Coincide
66. The probability distribution of the total number of heads obtained in four tosses of a balanced coin is $f(x)=$
A) $\frac{4 C_{x}}{16}, x=0,1,2,3,4$
B) $\frac{2 C_{x}}{4}, x=0,1,2$
C) $4 C_{\times}, \times=0,1,2,3,4$
D) $\frac{16}{4 C_{\times}}, \quad x=0,1,2,3,4$
67. Match the following according to the process of radioactive decay:

1. Conservation of mass-energy

- a. symmetry on space

2. Conservation of momentum

- b. symmetry in time

3. conservation of angular momentum

- c. stability of matter

4. conservation of charge

- d. isotropy of space

Codes: $1 \begin{array}{lllll} & 2 & 3 & 4\end{array}$
$\begin{array}{lcccc} & 1 & 2 & 3 & 4 \\ \text { B) } & \text { a } & \text { c } & d & b \\ \text { D) } & \text { a } & \text { d } & \text { c } & \text { b }\end{array}$
68. Alpha decay energies are precisely measured with the help of magnetic spectrometers by using the expression, (where B represents magnetic field, r is the radius of curvature)
A) $\frac{2 e^{2} B^{2} r}{M_{H e}}$
B) $\frac{2 e^{2} B^{2} r^{2}}{M_{H e}}$
C) $\frac{e B r}{M_{H e}}$
D) $\frac{e^{2} B^{2} r}{M_{H e}}$
69. If the velocity of the α-particle inside the nucleus is $4.41 \times 10^{7} \mathrm{~m} / \mathrm{s}$ and the radius of potential barrier is 9.3 fm then the decay probability per unit time is?
A) $1.47 \times 10^{18} \mathrm{~s}^{-1}$
B) $2.37 \times 10^{21} \mathrm{~s}^{-1}$
C) $3.52 \times 10^{26} \mathrm{~s}^{-1}$
D) $5.03 \times 10^{32} \mathrm{~s}^{-1}$
70. The β - decay transition is $\quad n\left(1 / 2^{+}\right) \rightarrow p\left(1 / 2^{+}\right)$
A) Allowed : Pure Fermi transition
B) Allowed : Pure Gamow-Teller transition
C) Allowed : Both Fermi and Gamow - Teller transitions
D) Second Forbidden transition
71. Correct statement about, Thermal conductivity due to electron
A) The metal consists of fixed positive ions in a sea of electrons
B) The electrons behave as a perfect gas and they transport thermal energy from the hotter to colden region
C) Each electron travels a distance λ in a mean free time 1 before colliding with a positive ion
D) Only those electrons that lie above the range $K_{B} T$ of the Fermi level are active in the transport process
72. The valence electrons do not directly determine the following property of a metal
A) electrical conductivity
B) thermal conductivity
C) shear modulus
D) metallic luster
73. Which one of the following cannot be explained by considering a harmonic approximation for the lattice vibration in solids?
A) Debye's T^{3} law
B) Dulong - Petit's law
C) Optical branches in lattices
D) Thermal expansion
74. In a one-dimensional Kronig-Penney model, the total number of possible wave function is equal to
A) twice the number of unit cells
B) Number of unit cells
C) half the number of unit cells
D) independent of the number of unit cells
75. The Bloch theorem states that within a crystal, the wavefunction $\psi(\bar{r})$, of an electron has the form
A) $\psi(\bar{r})=u(\bar{r}) e^{i \bar{k} \cdot \bar{r}}$, where $u(\bar{r})$ is an arbitrary function and \bar{k} is an arbitrary vector
B) $\psi(\bar{r})=u(\bar{r}) e^{i \bar{G} \cdot \bar{r}}$, where $u(\bar{r})$ is an arbitrary function and \bar{G} is a reciprocal lattice vector
C) $\psi(\bar{r})=u(\bar{r}) e^{i \bar{G} \cdot \bar{r}}$, where $u(\bar{r})=u(\bar{r}+\bar{A}), \bar{A}$ is a lattice vectors D) $\psi(\bar{r})=u(\bar{r}) e^{i \bar{k} \cdot \bar{r}}$, where $u(\bar{r})=u(\bar{r}+\bar{A}), \bar{A}$ is a lattice vectors and \bar{k} is an arbitrary vector
76. The plot of inverse susceptibility $(1 / \chi)$ versus temperature (1) of an antiferromagnetic sample corresponds to
A)

B)

C)

D)

77. The energy E_{K} for band electrons as a function as a function of the wave vector K in the first Brillouin zone ($-\pi / a \leq K \leq \pi / a$) of a one-dimensional monoatomic lattice is shown as,

The variation of the group velocity U_{K} is most appropriately represented by A)

B)

C)

78. The normalized wave function of a particle is
A) $\psi_{n}=\sqrt{\frac{2}{L}} \sin \left(\frac{\mathrm{n} \pi \mathrm{x}}{\mathrm{L}}\right)$
B) $\psi_{n}=\sqrt{\frac{2}{L} \sin \left(\frac{\mathrm{n} \pi \mathrm{x}}{\mathrm{L}}\right)}$
C) $\psi_{\mathrm{n}}=\frac{2}{\mathrm{~L}} \sqrt{\sin \left(\frac{\mathrm{n} \pi \mathrm{x}}{\mathrm{L}}\right)}$
D) $\psi_{\mathrm{n}}=\frac{2}{\mathrm{~L}} \sin \left(\frac{\mathrm{n} \pi \mathrm{x}}{\mathrm{L}}\right)$
79. The transition probability per unit normalised
A) non - zero only between continuum states of same energy
B) non-zero between states of same energy
C) zero only between continuum states of same energy
D) zero between states of same energy
80. The Schrodinger's time independent wave equation for a free particle is
A) $\nabla^{2} \psi+\frac{2 \mathrm{~m}}{\hbar^{2}} \mathrm{E} \psi=0$
B) $\nabla^{2} \psi+\frac{2 \mathrm{~m}}{\hbar^{2}} \mathrm{~V} \psi=0$
C) $\nabla^{2} \psi+\frac{2 \mathrm{~m}}{\hbar^{2}}(\mathrm{E}-\mathrm{V}) \psi=0$
D) $\nabla^{2} \psi+\frac{2 \mathrm{~m}}{\hbar^{2}}(\mathrm{~V}-\mathrm{E}) \psi=0$
81. Give the Remarks about the statements below:
a. Perturbation removes the degeneracy of the corresponding eigen value of the unperturbed Hamiltomian Ho.
b. Commuting operators have different set of eigen functions
c. According to Fermi's golden rule, transitions can occur only between states of equal energies and the probability density of transition increases linearly with time
Codes:
A) Statement (a) is wrong and (b) and (c) are correct
B) Statements (a) and (b) are correct and (c) is wrong
C) Statements (a) and (c) are correct and (b) is wrong
D) None of the above
82. The state of a free particle is described by the following wave function

$$
\begin{aligned}
\Psi(x) & =0 \text { for } x<-3 a \\
& =c \text { for }-3 a<x<a \\
& =0 \text { for } x>a
\end{aligned}
$$

using the normalization condition, the value of C is determined as
A) $C=\frac{1}{2 \sqrt{a}}$
B) $C=\frac{1}{2 a}$
C) $C=\frac{1}{4 a}$
D) $C=\frac{1}{4 \sqrt{a}}$
83. Consider the following statement about molecular spectra

1) CH_{4} does not give pure rotational Raman lines
2) SF_{6} could be studied by rotational Raman spectroscopy
3) N_{2} shows infrared absorption spectrum
4) $\mathrm{CH}_{3} \mathrm{CH}_{3}$ shows vibrational Raman and IR absorption lines
5) $\mathrm{H}_{2} \mathrm{O}_{2}$ shows pure rotational spectrum

Choose the right combination of correct statements
A) 1 and 2
B) 1,3 and 5
C) 1, 4 and 5
D) 2 and 3
84. The number of fundamental vibrational modes of Co_{2} molecule is
A) Four : 2 are Raman active and 2 are IR active
B) Four : 1 is Raman active and 3 are IR active
C) Three $: 1$ is Raman active and L is IR active
D) Three :2 are Raman active and L is IR active
85. In Raman effect, the wavelength of the incident radiation is $5890 \mathrm{~A}^{\circ}$. The wavelengths of stoke's and anti-stoke's lines are respectively
A) $5880 \mathrm{~A}^{\circ}$ and $5900 \mathrm{~A}^{\circ}$
B) $5900 \mathrm{~A}^{\circ}$ and $5880 \mathrm{~A}^{\circ}$
C) $5900 \mathrm{~A}^{\circ}$ and $5910 \mathrm{~A}^{\circ}$
D) $5870 \mathrm{~A}^{\circ}$
86. Choose the INCORRECT Statement:
A) ${ }^{13} \mathrm{C}$ nuclei always have resonance at a frequency lower than proton
B) Gyromagnetic ratio of ${ }^{13} \mathrm{C}$ nucleus is smaller than that of hydrogen
C) The resonaces of proton $\left({ }^{1} \mathrm{H}\right)$ are more difficult to observe than those of ${ }^{13} \mathrm{C}$
D) ${ }^{13} \mathrm{C}$ nuclei, with nuclear spin $\mathrm{I}=1 / 2$ are important in determining the structure of oroganic molecules
87. Condition for othogonality in curvilinear coordinater
A) $\frac{\partial r}{\partial u} \cdot \frac{\partial r}{\partial v}=0$
B) $\frac{\partial r}{\partial v} \cdot \frac{\partial r}{\partial w}=0$
C) $\frac{\partial r}{\partial w} \cdot \frac{\partial r}{\partial u}=0$
D) All of these
88. Any two eigen vectors co-responding to two distinct eigen values of a Hermitian matrix are
A) Parellel
B) Equal
C) Orthogonal
D) Not equal
89. The rank of the matrix $\left[\begin{array}{cccl}1 & 3 & 4 & 3 \\ 3 & 9 & 12 & 9 \\ -1 & -3 & -4 & -1\end{array}\right]$ is
A) 3
B) 1
C) 2
D) 4
90. A matrix satisfries equation $\mathrm{A} 2-3 \mathrm{~A}+30 \mathrm{I}=0$. Then its eigen values are
A) $\frac{3 \pm i \sqrt{111}}{2}$
B) $\frac{2 \pm i \sqrt{111}}{2}$
C) $\frac{3 \pm i \sqrt{85}}{2}$
D) $\frac{2 \pm i \sqrt{85}}{2}$
91. The equation $x \frac{d^{2} y}{d x^{2}}+(1-x) \frac{d y}{d x}+v y=0$ is called
A) Legendre equation
B) Hermites equation
C) Chebygev equation
D) Laguerre equation
92. Choose the correct statement
A) $\lceil\mathrm{n}=(\mathrm{n}-1) \Gamma(\mathrm{n}-1)$
B) $\lceil\mathrm{n}=(\mathrm{n}-1) \Gamma \mathrm{n}$
C) $\lceil\mathrm{n}=(\mathrm{n}+1) 1$
D) $\lceil\mathrm{n}=\mathrm{n}$
93. Range of r in spherical coordinates (r, θ, ϕ) is
A) $(-\infty, \infty)$
B) $[0, \infty)$
C) $(0, \infty)$
D) $(0,2 \pi)$
94. $\operatorname{div}(\phi \bar{A})=$
A) $\phi \operatorname{grad} \bar{A}+\bar{A} \operatorname{grad} \phi$
B) $\phi \operatorname{div} A+\bar{A} \cdot \operatorname{grad} \phi$
C) $\phi \operatorname{grad} A+\operatorname{div} A$
D) $\phi \operatorname{div} A-\bar{A} \cdot \operatorname{grad} \phi$
95. $\operatorname{Curl}($ uv $)=$
A) u curl $v+$ v curl u
B) u curl $v-v \operatorname{curl} u$
C) u curl $v+($ gradu $) x v$
D) u curl $v+($ gradu $) . v$
96. If $\int \mathrm{F} . \mathrm{dv}=0$ then the forced \bar{F} and system is
A) Solenoidal
B) Conservative
C) Irrotational
D) None of these
97. Choose the correct statements:
A) The eigen vectors corresponding to distinct characteristic roots of a matrix are linearly dependent
B) The modulus of each eigen value of a unitary matrix is unity
C) A square matrix some times does not satisfy its characteristic equation
D) If A is Hermitain -iA is Skew Hermition
98. If a, b are any two elements of a group
A) a and $b^{-1} a b$ of same order
B) a nd b-1 $a b$ are of different order
C) The order of a is less then order of $b^{-1} a b$
D) The order of a is more than order of $b^{-1} a b$
99. which of the following is NOT a group
A) $\left(\mathrm{M}_{2}(\mathrm{R}),+\right)$
B) $\left(Z_{p}-\{0\}, \odot p\right)$
C) ($\mathrm{nz},+$)
D) (R, o)
100. I All cyclic groups are abelian

II The order of cyclic group is same as the order of its generator
A) I and II are false
B) I is true II is false
C) I and II are true
D) I is false II is true
101. Every group of prime order is
A) Cyclic
B) Abelian
C) Cyclic and abelian
D) abelian but not cyclic
102. If H and K are two sub groups of order 8 and 12 respectively then $\mathrm{O}(\mathrm{HK})$ is 24 , if $0(H \cap K)$ is
A) 16
B) 8
C) 4
D) 2
103. Let G be the set of all 2×2 matrices $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ where a, b, c, d are real numbers such that $a d-b c \neq 0$ is a group then
i) G is abelian under multiplication
ii) G is non- abelian group
iii) The inverse of $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is $\left(\begin{array}{cc}\frac{d}{a d-b c} & \frac{-b}{a d-b c} \\ \frac{-c}{a d-b c} & \frac{a}{a d-b c}\end{array}\right)$
iv) The inverse of $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is $\left(\begin{array}{ll}\frac{a}{a d-b c} & \frac{b}{a d-b c} \\ \frac{c}{a d-b c} & \frac{d}{a d-b c}\end{array}\right)$
A) i, iv
B) ii, iii
C) ii, iv
D) i, iii
104. The identity element of the multiplicative group $\left\{2^{n}: n \in z\right\}$ is \qquad
A) 0
B) 1
C) $1 / 2$
D) $1 / 3$
105. The number of generator in cyclic group of order 10 are .
A) 1
B) 2
C) 3
D) 4
36. Let $J(\sqrt{2})$ be the ring of all real numbers of the form $m+n \sqrt{2}$, where m, n are integers with the usual addition and multiplication. then the Kernel of the homomorphism $\phi: J(\sqrt{2}) \rightarrow J(\sqrt{2})$ defined by $\phi(m+n \sqrt{2})=m-n \sqrt{2}$ is
A) $J \sqrt{2}$
B) empty
C) 0
D) $\sqrt{2}$
37. Which one of the following is not an abelian group?
A) $(\mathrm{Z},+)$
B) $(\mathrm{Q},+)$
C) $(\mathrm{R},+$)
D) (Z, \bullet)
D) The set of all 2×2 matrices w.r.t. matrix multiplication
39. Which of the following examples are true?
i) Let $G=S_{3}$ and $\bar{G}=\{e, a\}$ and

Then $f: G \rightarrow \bar{G}$ by $f\left(a^{i} b^{j}\right)=a^{i}$ is a homomorphism
ii) Let $G=\{R-\{0\}, \cdot\}$ and $\bar{G}=\{1,-1\}$

Then $f: G \rightarrow \bar{G}$ by $f(x)=\left\{\begin{array}{c}1 \text { if } x \text { is positive } \\ -1 \text { if } x \text { is negative }\end{array}\right.$ is a homomorphism
iii) Let $G=\left\{R^{+}, \cdot\right\}$ and $\bar{G}=\{R,+\}$

Then $f: G \rightarrow \bar{G}$ by $\phi(x)=\log _{10} x$ is a isomorphism
iv) Let G be the group of all 2×2 matrices $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ such that $a d-b c \neq 0$ under matrix multiplication and let $\bar{G}=\{R-\{0\}, \cdot\}$ then $f: G \rightarrow \bar{G}$ by $f\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=a d-b c$ is a homomorphism
A) i and ii true
B) iii is true
C) all are true
D) all are false
109. The eigen values of the matrix $\left[\begin{array}{lll}2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2\end{array}\right]$ are
A) $1,2,3$
B) $1,1,5$
C) $1,3,5$
D) $2,4,6$
110. The relation between Beta and Gamma functions is
A) $\beta(\mathrm{m}, \mathrm{n})=\frac{\sqrt{m}+\sqrt{n}}{\sqrt{m} \sqrt{n}}$
B) $\beta(\mathrm{m}, \mathrm{n})=\frac{\sqrt{m} \sqrt{n}}{\sqrt{m}+\sqrt{n}}$
C) $\beta(\mathrm{m}, \mathrm{n})=\frac{\sqrt{m} \sqrt{n}}{\sqrt{(m+n)}}$
D) $\beta(\mathrm{m}, \mathrm{n})=\frac{\sqrt{(m+n)}}{\sqrt{m} \sqrt{n}}$
111. How many steps involved in Herbation lesson planning பாடத்திட்ட்் தொடர்புைய ஹஹர்பாா்டின் யடிநிலலகள் எத்தணை
A) 7
B) 6
C) 8
D) 9
112. Which of the following was established in 1961 ? 1961-ல் வரைவுபடித்தப்பட்ட ஒன்று எது?
A) DTERT
B) DIET
C) NCERT
D) NAAC
113. Equality in Education suggested by
A) Sargeant Report
B) Kothari Commission
C) Hunter Commission
D) UGC

கல்வியில் சமவாய்ப்பு அளித்த கல்விக்குழு
A) சார்ஜண்்ட் உடன்படிக்கை
B) கோத்தாாி கல்விக்குழு
C) ஹண்்ட் குழ
D) UGC
114. Sainik School located in the District of
A) Kovai
B) Thirupur
C) Erode
D) Dindugal சைனிக்பள்ளி அமைந்தள்ள மாவட்டம்
A) கோவை
B) தியுப்ட்
C) ஈரோடு
D) திண்டிக்கல்
115. In which school Widely followed Pestolozzies approach?
A) Nursery
B) Montessori
C) Kindergarden
D) Anganwadi

ியஸ்டாலஜியின் அணுசுமுறைகளை பின்பற்றும் பள்ளி எது?
A) நाர்धती
B) மாண்டடசோி
C) கிண்டர்கார்டன்
D) அங்கன்வாடி
116. Article 15 (3) mainly insists
A) Womens Education
B) Free Education
C) Children's Education
D) $\mathrm{A} \& \mathrm{C}$

அரசியல் சாசன விதி 15(3) கூறுவது
A) பெண்்கல்வி
B) இலவச கல்வி
C) குழந்தைக் கல்வி
D) A மற்றும் C
117. Environmental protection Act was passed by the parliament in the year of சுற்றுச்சூழல் யாதுகாப்ப்ச் சட்டம் பாராளுமன்றத்தில் நிறைவேற்றப்பட்ட ஆண்டு
A) 1987
B) 1986
C) 1974
D) 1966
118. A person related to Adult Education
A) Braile
B) Bryson
C) Parker
D) $\mathrm{B} \& \mathrm{C}$
வயது வந்தோர் கல்வியுடன் தொடர்புடையவர்கள்
A) ப்ரெய்லி
B) பிரைசன்
C) பார்கர்
D) $\mathrm{B} \& \mathrm{C}$
119. Meaning of Education is
A) Learning
B) Bringout
C) Cultivate
D) All of these கவ்வி என்பதன் பொருள்
A) கற்றல்
B) வெளிக் கொணர்தல்
C) வளர்ப்பது
D) அனைத்தும்
120. Who Invent "Teaching Machine"
A) Galaxo
B) Faulkner
C) Glacier
D) Sydney pressy

கற்பித்தல் இயந்திரத்தினை உருவாக்கியவர்
A) காலக்ஸோ
B) பால்க்னர்
C) கிளேசியா்
D) சிட்னி ப்ரெஸ்ஸி
121. Society Based Educationist
A) Russell
B) Morgan
C) Maxwell
D) Morne

சமூகக் கல்வியாளர்
A) ரஸல்
B) மார்கன்
C) மாக்ஸ்வெல்
D) மார்னே
122. Wastage \& stagnation defined by
A) Kothari Commission
B) UGC
C) Hartog Committee
D) Hunter Commission
கழிவு மற்றும் தேக்கத்தினை வரையறை செய்த கமிட்டி எது?
A) கோத்தாாி குழு
B) UGC
C) ஹார்டாக் குழு
D) ஹண்டர் குழு
123. 'OB' Scheme recommended by
A) 1965 Policy
B) 1991 Policy
C) 1986 Policy
D) 1979 Policy
"OB" திட்டத்தினை வெளியிட்ட கல்விக்குழு
A) 1965 கல்விக்கொள்கை
B) 1991 கல்விக்கொள்கை
C) 1986 கல்விக்கொள்கை
D) 1979 கல்விக்கொள்கை
124. Cognitive stages analysed by
A) Bloom
B) Bruner
C) Maslow
D) Wundt

அறிவுசார் நிலையினை பகுப்பாய்வு செய்தவர்
A) பபூூம்
B) பரூனர்
C) மாஸ்லோ
D) உண்ட்
125. 'Udisha project' means
A) ICDS training
B) NCC
C) NRC
D) JRC
"உதிஸ்ஸா திட்டம்" எனப்படுவது
A) ICDS பயிற்சி திட்டம்
B) NCC
C) NRC
D) JRC
126. IQ Variation 110-119 comes Under
A) Gifted Persons
B) Average Persons
C) Genius
D) talented Persons

110-119 நுண்ணறிவு உடையோாின் வகைப்பாடு
A) மீத்திறன் மிக்கோர்
B) சராசாி திறன் படைத்தோர்
C) மேதைகள்
D) திறன் மிக்கோர்
127. Vicerotonia, Cerebrotonia, Somatotonia are of classified by
A) Sheldon
B) Kretchmer
C) Carl Jung
D) Ogburn

சுக விருப்பமுள்ள ஆளுமை, சிந்தனை சார் ஆளுமை, செயல்சார் ஆளுமை, என வகைப்படுத்தியவர்
A) ஷெல்டன்
B) கிரெட்சுமர்
C) காரல்யூங்
D) ஆக்பர்ன்
128. "Schizo phrenia" is a kind of defence mechanism
A) Identification
B) Retionalization
C) Regression
D) Scapogotism
"ஷிஷோப்ரினியா" என்ன வகையான நடத்தை
A) ஒன்றுதல்
B) காரணம் கற்பித்தல்
C) பின்னோக்கம்
D) பலிகடா ஆக்கப்படிதல்
129. Branch of Psychology is mainly focused Adolescence
A) Educational Psychology
B) General Psychology
C) Child Psychology
D) Growth Psychology

குமரப்பருவம் பற்றி படிக்கும் உளவியலின் பிரிவு?
A) கல்வி உளவியல்
B) பொது உளவியல்
C) குழந்தை உளவியல்
D) வளர்ச்சி உளவியல்
130. Who told that "Psychology is a Behavior Science"
A) Mc Doug all
B) Watson
C) Skinner
D) Titchner

உளவியல் நேர்மறை நடத்தை அறிவியல் என்று கூறியவா்
A) மக்டூகல்
B) வாட்சன்
C) ஸ்கின்னர்
D) டிட்ச்னர்
131. Who Introduced Individual Psychology?
A) Sigmen Freud
B) Jung
C) Adler
D) Williamson தனிநபர் உளவியலை தோற்றுவித்தவா்
A) சிக்மண்்ட் ப்ராய்டு
B) யூங்
C) ஆட்லா்
D) வில்லியம் சன்
132. Attention theory formulated by
A) Ditchner
B) Wundt
C) Watson
D) Hebb
கவன கோட்பாடு
A) டிட்ச்னர்
B) உண்்ட
C) வாட்சன்
D) ஹெப்
133. How many Chromosomes are present in a female germ cell?

பெண் இனச்செல்லில் காண்்படிம் குரோமோசோமின் எண்ணிக்கை
A) 46
B) 23
C) $23+23$
D) $46+23$
134. Physical Growth factor determinate by
A) Heredity
B) Environment
C) Heredity \& Environment
D) None of these

உடல் வளர்ச்சியை தீர்மானிப்பது
A) மரப
B) ஞூழ்நிலை
C) மரபும், சூழ்நிலையும்
D) எதுவுமில்லை
135. How many chromosomes are present in the cells released by meiosis cell division?
A) 23 Pairs of Chromosome
B) 23 Chromosome
C) 46 Chromosome
D) 46 Pairs of Chromosome

மியாஸிஸ் பகுப்பினால் செல்களில் காணப்படும் குரோமோசோம்களின் எண்ணிி்கை
A) 23 ஜோடி குரோமோசோம்
B) 23 குரோமோசோம்
C) 46 குரோமோசோம்
D) 46 ஜோடி குரோமோசோம்
136. Who had done Kalli kock test
A) Goddard
B) Calvin
C) Amala \& Kamala
D) Cyrillburt \& Shankar காலிகாக் சோதனை யாரால் செய்யப்பட்டது?
A) கொட்டர்டு
B) கால்வின்
C) அமலா \& கமலா
D) சிாில்பர்ட் மற்றும் சங்கர்
137. Moral relativism is Connected to which one of the following developmental stage?
A) Adolescence
B) Old Age
C) Childhood
D) Pre child hood

ஒழுக்கம் பற்றிய சார்பு நோக்கம் எப்பருவத்துடன் தொடர்புடையது ?
A) குமரப்பருவம்
B) முதிர் பருவம்
C) குழந்தை பருவம்
D) முன் குழந்தைப்பருவம்
138. Inferiority Complex arise from which stage
A) Adolescence
B) $2^{\text {nd }}$ year
C) $6^{\text {th }}$ year
D) 0-2 years

தாழ்வுணர்வு நிலை தோன்றுவது
A) குமரப்பருவம்
B) 2ம் ஆண்டு
C) 6 ஆம்ஆண்டு
D) 0 -2 வயது வரை
139. J.B. Watson proposed type of Emotions
J.B. வாட்சன் குறிப்பிடுகின்ற மனவெழுச்சிகள்
A) 2
B) 4
C) 3
D) 5
140. Co operation under which development?
A) Physical
B) Moral
C) Social
D) Emotional

ஒத்துழைப்பு எவ்வகை வளர்ச்சி?
A) உடல்ரீதியான
B) ஒழுக்க
C) சமூக
D) மனவெழுச்சி
141. Who is called as father of modern computer
A. Bill Gakes B. Michael Faraday
C. Alexander Fleming
D. Charles Babbage நவீன கணினியின் தந்தை என அழைக்கப்படிபவர்?
A) பில் கேட்ஸ்
B) மைக்கேல் பாரடே
C) அலெக்ஸ்சான்டர் பிளமிங்
D) சார்லஜ் பாபேஜ்
142. Which of following stacks were created in 1987 ?
A. Goa only
B. Goa and Arunachal Pradesh
C. Arunachal Pradesh only
D. None of these
1987-ல் உருவாக்கப்பட்ட மாநிலம்
A) கோவா மட்டிம்
B) கோவா மற்றும் அருணாசல பிரதேசம்
C) அருணாசல பிரதேசம்
D) எதுவுமில்லை
143. Which of the following articles makes the super court a court of record? கீழ்க்கண்்ட எந்த விதி உச்சநீதிமன்றத்தின் பதிவுகளைப் பற்றி கூறுகிறது
A. 125
B. 127
C. 129
D. 131
144. In which year planning commission was established in India?

திட்டக்கமிஷன் இந்தியாவில் அமைக்கப்பட்ட ஆண்டு
A. 1950
B. 1952
C. 1951
D. 1949
145. Wimbledon is place associated with of the following sports?
A. Badminton
B. Cricket
C. Lawn tennis
D. Hockey
விம்பிள்டன் என்ற இடம் கீழ்க்கண்்ட விளையாட்டுக்காக அமைக்கப்பட்டுள்ளது
A) பேட்மிட்டன்
B) கிரிக்கெட்
C) டென்னிஸ்
D) ஹாக்கி
146. Largest National Park in North east in India is Located at?
A. Assam
B. Mizoram
C. Arunachal Pradesh
D. Nagaland

வடகிழக்கு இந்தியாவில் உள்ள மிகப் பொிய தேசிய பூங்கா அமைந்துள்ள மாநிலம்
A) அஸ்ஸாம்
B) மிசோரம்
C) அருணாசலப்பிரதேசம்
D) நாகலாந்து
147. Where was the First Tamil Sangam held?
A. South Madurai
B. Kapatapuram
C. Kaveripattinam
D. Nellai
A) தென்மதுரை
B) கபாடபுரம்
C) காவோிப்பட்டினம்
D) நெல்லை
148. Bhutan does not share its border with which Indian state?
A. West Bengal
B. Arunachal Pradesh
C. Meghalaya
D. Sikkim பூடான் நாடி எந்த இந்திய மாநிலத்தின் எல்லையை பகி்்ந்து கொள்ளவில்லை?
A) மேற்கு வங்காளம்
B) அருணாச்சலப்பிரதேசம்
C) மேகாலயா
D) சிக்கிம்
149. Which of the following is the full form of U.S.S.R?
U.S.S.R-ன் விவாிவாக்கம்?
A. Union of Soviet Socialist Republics
B. Union of Soviet secular Republics
C. Union of secular Soviet Republics
D. Union of secular socialist republics
150. What does OS stand for?

OS -ன் விாிவாக்கம்
A. Operating software
B. Operating System
C. Operating status
D. Operating supplier

TRB - P.G. Asst. - 2019 - Physics - Model-I [Online Test]

14.09.19

1	B	26	B	51	B	76	B	101	C	126	D
2	B	27	B	52	D	77	B	102	C	127	A
3	A	28	C	53	C	78	A	103	B	128	C
4	C	29	D	54	A	79	A	104	B	129	C
5	A	30	D	55	A	80	A	105	D	130	B
6	B	31	D	56	C	81	C	106	C	131	C
7	D	32	D	57	C	82	A	107	D	132	D
8	A	33	A	58	B	83	C	108	C	133	B
9	D	34	B	59	A	84	D	109	B	134	A
10	A	35	B	60	A	85	A	110	C	135	B
11	C	36	B	61	B	86	C	111	B	136	A
12	B	37	A	62	A	87	D	112	A	137	A
13	C	38	A	63	A	88	C	113	B	138	C
14	A	39	A	64	B	89	C	114	B	139	C
15	B	40	A	65	D	90	A	115	C	140	C
16	C	41	B	66	A	91	D	116	D	141	D
17	A	42	D	67	A	92	A	117	B	142	B
18	B	43	A	68	B	93	B	118	D	143	C
19	A	44	C	69	B	94	B	119	D	144	A
20	D	45	B	70	C	95	C	120	D	145	C
21	C	46	A	71	D	96	B	121	A	146	C
22	C	47	A	72	C	97	B	122	A	147	A
23	D	48	B	73	D	98	A	123	C	148	C
24	D	49	A	74	B	99	D	124	A	149	A
25	A	50	A	75	D	100	C	125	A	150	B

